Automated Recognition of Sleep Stages Using Electroencephalograms
نویسنده
چکیده
The assessment of different sleep stages and their disorders in diseases is an important part of telematic medicine. With an electroencephalogram, the different stages of sleep can be monitored and classified with respect to brain activity. By means of modern data management such as the patient monitor ixTrend, for example, the data can be recorded for long sleep phases and evaluated by a computer using appropriate software, such as Dataplore. Here, a new mathematical model for the automated classification of sleep stages is introduced. The statistical method of autocorrelation, applied to six known sleep stages, was extended by one new class for unknown signals. Due to this new class, it is not necessary to sort all recorded EEG signals into one of the known classes, thereby, minimising the probability of errors. Further, the dependence of the error probability on the duration of the analysed EEG signal was assessed. A minimal error probability of pmin = 0.15 was detected. Exemplary data for one patient are reported. Zusammenfassung Die Beurteilung der verschiedenen Schlafphasen und deren Störungen bei Erkrankungen spielt eine wichtige Rolle in der telematischen Medizin. Mit einem Elektroenzephalogramm können die Schlafphasen überwacht und in verschiedene Klassen der Hirnaktivität eingeteilt werden. Durch moderne Methoden des Datenmanagements, wie etwa den Patientenmonitor ixTrend, können die Daten über längere Schlafphasen aufgezeichnet und am Computer mit geeigneter Software, etwa Dataplore, analysiert werden. Hier wird ein neues mathematisches Modell zur automatischen Klassifizierung der Schlafphasen vorgestellt. Die statistische Methode der Autokorrelation, angewendet auf sechs bekannte Schlafphasen, wurde erweitert um eine neue Klasse nicht zuordenbarer Muster. Durch diese neue Klasse wird es vermieden, jedes aufgezeichnete EEGMuster in eine der bekannten Klassen hineinzuzwingen. Dadurch wird der Fehler bei der Zuordnung verringert. Weiter wird der Einfluss der Länge des analysierten EEG auf die Fehlerquote der Zuordnung untersucht. Es zeigte sich eine minimale Fehlerquote von pmin = 0,15. Es werden beispielhafte Daten eines Patienten gezeigt.
منابع مشابه
Automated Sleep Stage Scoring by Decision Tree Learning
In this paper we describe a waveform recognition method that extracts characteristic parameters from waveforms and a method of automated sleep stage scoring using decision tree learning that is in practice regarded as one of the most successful machine learning methods. In our method, rst characteristics of EEG, EOG and EMG are compared with characteristic features of alpha waves, delta waves, ...
متن کاملCharacterizing Sleep Stages by the Fractal Dimensions of Electroencephalograms
Fourier analysis has shown that human electroencephalography (EEG) signals mainly consist of frequencies below 80 Hz. Waves with a frequency below 13Hz are dominant during sleep. Here we find that the fractal dimensions of sleep EEG results in a frequency range of 2Hz to 13Hz have potential to be used as a continuous parameter to characterize sleep status. Our results show that during sleep, th...
متن کاملFace Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملA transition-constrained discrete hidden Markov model for automatic sleep staging
BACKGROUND Approximately one-third of the human lifespan is spent sleeping. To diagnose sleep problems, all-night polysomnographic (PSG) recordings including electroencephalograms (EEGs), electrooculograms (EOGs) and electromyograms (EMGs), are usually acquired from the patient and scored by a well-trained expert according to Rechtschaffen & Kales (R&K) rules. Visual sleep scoring is a time-con...
متن کاملEvidence of a pharmacodynamic EEG profile in rats following clonidine administration using a nonlinear analysis
BACKGROUND Changes caused by clonidine in rodent electroencephalograms (EEG) have been reported with some inconsistency. For this reason, a pre-clinical study was conducted in order to confirm previous findings with both a standard spectral analysis and a sleep stage scoring procedure. In addition, a nonlinear technique for analysing the time-varying signals was implemented to compare its perfo...
متن کامل